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Abstract. The spectra and wave functions of the 2-dimensional harmonic oscillator in a noncommutative
plane are revised by using the path integral formulation in coordinate space and momentum space, respec-
tively. We perform the path integral formulation in coordinate space first. Then we study this problem in
momentum space. The propagator is computed both in coordinate space and in momentum space. The mod-
ification due to noncommutativity of eigenvalues and eigenfunctions is studied. Both the small and large
noncommutative parameter limits are discussed.

PACS. 11.10.Ef

1 Introduction

In the past few years, noncommutativity has attracted
much attention owing to the development of string the-
ory [1–3]. It is widely believed that the open string’s end
points will be noncommutative in the presence of a back-
ground NS-NS B-field. This shows that the coordinates
of D-branes, which the open strings are attached to, are
noncommutative [4–7]. The fluctuations of the brane are
described by noncommutative field theories. As a result,
there is a considerable number of papers dealing with field
theories on noncommutative space. It has been proven
in [8, 9] that some non-trivial phenomena would occur in
perturbative quantum field theories. The non-perturbative
aspect of field theories on noncommutative space has also
been studied extensively since the work of [10].
The one particle sector of noncommutative quantum

field theories, i.e., noncommutative quantum mechanics
(NCQM), has also been studied in various
respects [11–14]. The eigenvalue problem of NCQM is the
focus one [15–18]. In most of the works, the authors map
the noncommutative quantum space to a commutative one
and then use the operator form to study these problems.
However, the problem of operator ordering may arise. The
other form of quantum mechanics, say, the path integral
formulation, especially analyzing eigenvalues and eigen-
functions, has received less attention. The advantage of
the path integral formulation is that all the numbers are
C-numbers so the problem of operator ordering can be
avoided. The present paper is devoted to filling of this gap.

a e-mail: jingjian@mail.buct.edu.cn

The key point of the path integral is the construction of
the propagator.Both eigenvalues andwave functions can be
read from it once the propagator is constructed.We shall re-
examine the spectra and wave functions of the noncommu-
tative 2-dimensional harmonic oscillator fromthepath inte-
gral pointof view.Althoughweonlyanalyze a simplemodel,
we hope that this paper may give some hints to analogous
problems or serve pedagogical purposes at least. The orga-
nization of our paper is as follows: in Sect. 2 we shall start
fromthe classical noncommutative 2-dimensional harmonic
oscillator and then map it to the ordinary classical plane.
The propagator is constructed, and then both eigenvalues
and wave functions are obtained. In Sect. 3, we shall per-
form the path integral directly in momentum space. Some
further discussion will be given in Sect. 4.

2 Path integral in coordinate space

The noncommutative quantum plane is defined by

[X̂i, X̂j] = iθij , i, j = 1, 2 , (1)

where θij is the noncommutative parameter, an antisym-
metric tensor of dimension of (length)2. Since we only con-
centrate on the 2-dimensional case in this paper, the non-
commutative parameter θij can be chosen as θij = θεij .
The full algebras of NCQM are characterized by the al-
gebras (1) together with the following commutative rela-
tions [11–14]:

[X̂i, P̂j ] = ih̄δ
i
j , [P̂i, P̂j ] = 0 . (2)
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The commutation relations (1) imply that there is an-
other Heisenberg-type relation besides the standard one in
the noncommutative plane,

∆X1∆X2 ∼ θ . (3)

It means that one cannot localize a particle’s position ex-
actly. As a result, the wave functions in the noncommuta-
tive coordinate space ψ(Xi, t) = 〈Xi, t|ψ〉 lose their exact
meaning. However, one can map the algebras of NCQM,
(1) and (2), to the ordinary ones, which are characterized
by

[x̂i, x̂j ] = 0 , [x̂i, p̂j ] = ih̄δ
i
j ,

[p̂i, p̂j ] = 0 , (4)

via the following transformation:

X̂i = x̂i−
1

2h̄
θij p̂j , P̂i = p̂i . (5)

Accordingly, the Hamiltonian in the noncommutative
space H(X̂i, P̂i) should be replaced by the Hamiltonian in
ordinary space,H(X̂i, P̂i)→H(x̂i, p̂i), with

H(X̂i, P̂i) =H(x̂
i−
1

2h̄
θij p̂j , p̂i) . (6)

After the standard substitutions x̂i→ xi, p̂i =
h̄
i
∂
∂xi
, and

Ĥ(x̂i, p̂i)→ H
(
xi, h̄i

∂
∂xi

)
(the operator ordering prob-

lem may arise at this stage), one can write down the
Schroedinger equation and give the wave functions
ψ(xi, t) = 〈xi, t|ψ〉 in the commutative space the standard
explanations. Especially if the potential does not depend
on time explicitly, one can solve the energy function

H

(
x̂i,
h̄

i

∂

∂xi

)
ψn(x

i) =Enψn(x
i) , (7)

and then get the spectra and wave functions.
In this paper, we shall analyze this problem using the

path integral formulation. In this section, we shall perform
the path integral process in commutative space (4). In the
next section, we shall perform the process in the momen-
tum space.
The classical Hamiltonian of the noncommutative 2-di-

mensional harmonic oscillator with massM and frequency
ω0 is

H =
P 2

2M
+
1

2
Mω20X

2 , (8)

in which the variables Xi, Pi satisfy the following classical
Poisson brackets:

{Xi, Xj}= θεij , {Xi, Pj}= δ
i
j ,

{Pi, Pj}= 0 , i, j = 1, 2. (9)

The corresponding quantum version of the above algebras
are nothing but (1) and (2).
The nonvanishing brackets for the variables Xi mean

that one cannot define the propagator by 〈Rb, tb|Ra, ta〉

(in which R=Xi, i= 1, 2) in the noncommutative plane.
Nevertheless, once we map the classical noncommutative
variables Xi, Pi to the classical commutative ones x

i, pi,
which are defined as

{xi, xj}= 0 , {xi, pj}= δ
i
j , {pi, pj}= 0 , (10)

using the following substitutions:

Xi = xi−
θ

2
εijpj , Pi = pi , (11)

we can define the propagator in the commutative plane as
usual.
In terms of the commutative variables xi, pi, the classi-

cal Hamiltonian (8) is expressed as

H =
1

2M∗
p2i +

M∗Ω2

2
x2i −ωε

ijxipj , (12)

in which

M∗ =
M

1+
M2ω20θ

2

4

(13)

and

Ω2 =

(
1+
M2ω20θ

2

4

)
ω20 , ω =

1

2
M∗θΩ2 . (14)

The canonical quantization procedure is complete, pro-
vided the above canonical variables are replaced by the cor-
responding operators and the classical Poisson brackets are
replaced by quantum brackets, {, } → 1

ih̄ [, ]. This proced-
ure is just the one that has been used widely. Here we shall
analyze this model using the path integral formulation.
The starting point of the path integral formulation is to

construct the propagator defined by [19, 20]

K(rb, tb; ra, ta)≡ 〈rb, tb|ra, ta〉

=

∫ 2∏

i=1

DxiDpi exp

{
i

h̄

∫ tb

ta

dt
[
piẋ

i−H
(
xi, pi

)]}
,

(15)

where r = xi, i = 1, 2 and H is the Hamiltonian. For our
model, the Hamiltonian has been expressed in terms of
standard canonical variables (12).
Since the integrand is the exponential of a quadratic

form in the variables pi, we can integrate them directly. In-
tegrating with respect to the variables pi, we arrive at

K(rb, tb; ra, ta) =N

∫ 2∏

i=1

Dxi exp

{
i

h̄

∫ tb

ta

dtL(xi, ẋi)

}
,

(16)

where N is a numerical factor and L= L(xi, ẋi) is the La-
grangian corresponding to the Hamiltonian (12),

L(xi, ẋi) =
1

2
M∗ẋ2i +M

∗ωεijxiẋj−
1

2
M∗ω20x

2
i . (17)
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Obviously, the noncommutative parameter θ acts as a mag-
netic field perpendicular to the xi plane.
Since

K(rb, tb; ra, ta) = 〈rb| exp

(

−i
Ĥ

h̄
T

)

|ra〉 , (18)

where T = tb− ta and
∑

n

|n〉〈n|= 1 , (19)

in which |n〉 are eigenstates of the Hamiltonian,

Ĥ|n〉=En|n〉 . (20)

Sandwiching (19) into (18), we are lead to

K(rb, tb; ra, ta) =
∑

n

exp

(
−i
En

h̄
T

)
〈rb|n〉〈n|ra〉

=
∑

n

exp

(
−i
En

h̄
T

)
ψn(rb)ψ

∗
n(ra) .

(21)

So, one can read both the eigenvalues and wave functions
from the propagator, once it is constructed.
There are many methods to calculate the propaga-

tor (16). We sketch only one of them.
Let xicl be the classical path between the two specified

end points (ta, ra) and (tb, rb). This is the path which is an
extremum for the action S =

∫ tb
ta
dtL.

We represent xi in terms of xicl and the deviations δx
i:

xi = xicl+ δx
i . (22)

In fact, xicl are the solutions of the classical equations
of motion, which are obtained by minimizing the
Lagrangian (17):

M∗ẍicl−2M
∗ωεij ẋjcl+M

∗ω20x
i
cl = 0 , (23)

with the ‘boundary’ conditions

t= ta , x
i = xia ,

t= tb , x
i = xib . (24)

It is straightforward to get the solutions of the equa-
tions of motion (23) with the boundary conditions (24).
After some calculations, we get

zcl = e
−iω(t−ta)

[
za cosΩ(t− ta)+

zbe
iωT

sinΩT
sinΩ(t− ta)

− za cotΩT sinΩ(t− ta)

]
,

z̄cl = e
iω(t−ta)

[
z̄a cosΩ(t− ta)+

z̄be
−iωT

sinΩT
sinΩ(t− ta)

− z̄a cotΩT sinΩ(t− ta)

]
, (25)

where z = x1+ ix2, z̄ = x1− ix2. Also, za = x1a+ ix
2
a, z̄a =

x1a− ix
2
a, as we have for zb and z̄b.

Denote Scl as the action along the classical trajectory,

Scl =

∫ tb

ta

dtL(xicl, ẋ
i
cl)

=

∫ tb

ta

dt
1

2
M∗ẋi2cl +M

∗ωεijxiclẋ
j
cl−
1

2
M∗ω20x

i2
cl .

(26)

Taking account of the classical equations of motion, we
can write the classical action as

Scl =
1

4
M(z ˙̄z+ z̄ż)|tbta . (27)

The explicit expression for the classical action can be ob-
tained by substituting (25) into (27),

Scl =−
M∗Ω

2 sinΩT

[(
zaz̄be

−iωT + z̄azbe
iωT
)

− cosΩT (zaz̄a+ zbz̄b)] . (28)

Substituting (22) into (17), we can write the propagator
as

K(rb, tb; ra, ta) =Ne
i
h̄SclF (ta, tb) , (29)

where Scl has been given in (28), and F (ta, tb) is the pref-
actor (or quantum fluctuation).
Since initial and final points are fixed at ra, rb respec-

tively, the deviations vanish at the end points:

δxi(ta) = δx
i(tb) = 0 , i= 1, 2 . (30)

So the prefactor F (ta, tb) can be written as

F (ta, tb) =

∫ 0

0

2∏

i=1

D(δxi) exp

[
i

h̄

∫ tb

ta

dtL(δxi, δẋi)

]
.

(31)

Furthermore, since the Lagrangian (17) is invariant under
time translation, the prefactor only depends on the time
difference T = tb− ta. As a result, the prefactor can be
written as

F (ta, tb) = F (T )

=

∫ 0

0

2∏

i=1

D(δxi) exp

{
i

h̄

∫ tb

ta

dtL(δxi, δẋi)

}
,

(32)

in which

L(δxi, δẋi) =
1

2
M∗(δẋi)

2+M∗ωεijδxiδẋj

−
1

2
M∗ω20(δxi)

2 . (33)
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Integrating by parts and noticing the boundary condi-
tions for the deviation δxi in (30), we can write the prefac-
tor (32) as

F (T ) =

∫ 0

0

2∏

i=1

D(δxi)exp{
iM∗

2h̄

∫ tb

ta

dtδxi∆ijδx
j} ,

(34)

where∆ij is an operator defined by

∆ij =−δij(
d2

dt2
+ω20)+2ωεij

d

dt
. (35)

Obviously, the integrand is an exponential of the quadratic
form (Gaussian type), and we can integrate it as follows:

F (T )∼ [det∆ij ]
−12

∼
∞∏

n=1

(
n2π2

T 2

)−1 ∞∏

n=1

[
1−
Ω2T 2

n2π2

]−1
. (36)

Since the first product does not depend onΩ, we collect
it and other factors into a single constant. As for the second
factor, we use the well-known formula

sinx= x
∞∏

n=1

(
1−

x2

n2π2

)
. (37)

So the prefactor F (T ) is expressed as

F (T ) = C
ΩT

sinΩT
, (38)

where C is a constant that is independent of Ω. It can be
uniquely determined by noticing that the integral is a 2-
dimensional harmonic oscillator when ω→ 0 or a charged
particle moving in a plane with a constant perpendicular
magnetic field in the symmetric gauge when ω0→ 0. The
final result is

K(rb, tb; ra, ta) =
M∗Ω

2πih̄ sinΩT

× exp

{
−
iM∗Ω

2h̄ sinΩT

[ (
zaz̄be

−iωT +c.c.
)

− cosΩT (zaz̄a+ zbz̄b)
]
}
, (39)

in which c.c. means the complex conjugate.
The eigenvalues and wave functions can be read from

the above formula (an analogous process can be found
in [21]; here we only list the result). They are

Enr ,m = 2h̄Ω

(
nr+

1

2
+
|m|

2
−
mω

2Ω

)
, (40)

nr = 0, 1, 2, · · · , m= 0,±1,±2, · · ·

and

ψnr ,m(r) =
1
√
2πr
Rnr,m(r)e

imθ , (41)

in which Rnr ,m(r) is the radial wave function

Rnr ,m =
√
r

(
2M∗Ω

h̄

) 1
2

√
nr!

(nr+ |m|)!
exp

(
−
M∗Ω

2h̄
r2
)

×

(
M∗Ω

h̄
r2
)|m|/2

L|m|nr

(
M∗Ω

h̄
r2
)

(42)

and L
|m|
nr is for the Laguerre polynomials.

3 Path integral in momentum space

In the above section, we studied the noncommutative
2-dimensional harmonic oscillator by employing the path
integral formulation. Because of the noncommutativity of
the coordinates in noncommutative space, we cannot de-
fine the propagator in the noncommutative space directly.
However, we notice that the commutators among the mo-
menta are commutative. As a result, the wave functions
in the momentum space ϕ(P, t) = 〈P, t|ϕ〉 still have their
exact meanings. So it is possible to calculate the propaga-
tor in momentum space and then read both the eigenvalues
and wave functions from it.
According to the definition [19–21], the propagator in

momentum space is defined by

K(Pb, tb;Pa, ta)≡ 〈Pb, tb|Pa, ta〉 . (43)

Considering (19), we can rewrite the propagator (43) as

K(Pb, tb;Pa, ta) = 〈Pb| exp

{

−i
Ĥ

h̄
T

}

|Pa〉

=
∑

n

exp

(
−i
En

h̄
T

)
ϕn(Pb)ϕ

∗
n(Pa) .

(44)

One can, of course, read both eigenvalues and wave func-
tions in momentum space from it once it is determined.
We go on in the standard way writing the propagator

(44) in the form [21]

K(Pb, tb;Pa, ta) =

∫ 2∏

i=1

DXiDPi exp

[
i

h̄
Sp

]
, (45)

where Sp =
∫ tb
ta
dtLp is the action in the phase space

(which is spanned by the variables Xi and their canonical
conjugate momenta Pi) we shall construct.
There are two principles one must notice when the La-

grangian Lp is constructed. One is that the Lagrangian
should lead to the commutator (1) and (2); the other is
that it should be consistent with the Hamiltonian (8). It
can be verified by employing Faddeev–Jackiw theory [22]
that the following first-order Lagrangian satisfies the above
principles:

Lp =
1

2

(
PiẊ

i−XiṖi
)
+
1

2
θεijPiṖj−H , (46)
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whereH is the Hamiltonian that has been given in (8).
The explicit expression of the action Sp is

Sp =

∫ tb

ta

dtLp

=

∫ tb

ta

dt
1

2

(
PiẊ

i−XiṖi
)
+
1

2
θεijPiṖj−H .

(47)

Integrating by parts and dropping the surface term, we can
rewrite the above action as

Sp =

∫ tb

ta

dt−XiṖi+
1

2
θεijPiṖj−H . (48)

Since the integrand (45) is an exponential of a quadratic
form in the variables Xi, we integrate them directly. The
result is

K(Pb, tb;Pa, ta)

=N

∫ 2∏

i=1

DPi exp

[
i

h̄

∫ tb

ta

dtLm(Pi, Ṗi)

]
, (49)

where N is a numerical factor and Lm(Pi, Ṗi) is the La-
grangian in momentum space,

Lm =
1

M2ω20

(
1

2
MṖ 2i +MωεijPiṖj −

1

2
Mω20P

2
i

)
,

(50)

where the parameter ω has been introduced in (14).
The Lagrangian (50) is dual to the one that describes

a charged harmonic oscillator moving in a plane with a per-
pendicular constant magnetic field in coordinate space.
Clearly, the noncommutative parameter θ serves again as
a magnetic field.
We can follow the same scheme to calculate the prop-

agator in the momentum space corresponding to the La-
grangian (50). Here we only list the result:

K(Pb, tb;Pa, ta)

=
2πh̄Ω

iMω20 sinΩT
exp

{
−

iΩ

2Mh̄ω20 sinΩT

[(
PaP̄be

−iωT+c.c
)

− cosΩT (PaP̄a+PbP̄b)
]
}
, (51)

where Pa = P
1
a +P

2
a , etc. Ω has been given in (14).

From the above propagator, one can read both eigenval-
ues and wave functions from it.
The expression of the eigenvalues is

Enr ,m = 2h̄Ω

(
nr+

1

2
+
|m|

2
−
mω

2Ω

)
,

nr = 0, 1, 2, · · · , m= 0,±1,±2, · · · , (52)

which coincide with the ones obtained in the coordinate
path integral formulation (40). The expression for the wave
functions is

ϕnr ,m(P) =
1

√
2πP

Rnr ,m(P )e
imθ , (53)

in which P = |P| and Rnr,m(P ) are radial wave functions
in momentum space,

Rnr,m(P ) =
√
P

(
2Ω

Mh̄ω20

) 1
2

√
nr!

(nr+ |m|)!

× exp

(
−
ΩP 2

2Mh̄ω20

)(
ΩP 2

Mh̄ω20

)|m|/2

×L|m|nr

(
ΩP 2

Mh̄ω20

)
. (54)

4 Conclusions and remarks

In the previous sections, we get the eigenvalues and wave
functions of the 2-dimensional harmonic oscillator from the
propagators (39) and (51) both in coordinate space and
momentum space, respectively.
For the former, because of the noncommutative rela-

tions among the coordinates (1), the wave functions in
noncommutative space lose their exact meaning. As a re-
sult, one cannot define the propagator in noncommutative
coordinate space directly. In order to employ the path in-
tegral formulation, we map the noncommutative plane to
the commutative one and then calculate the propagator in
this commutative plane. Since the integrand is an exponen-
tial of a Gaussian form in the momenta, we integrate them
and get the Lagrangian (17). This Lagrangian is analogous
to the one that describes a charged harmonic oscillator
moving in a plane with a uniform perpendicular magnetic
field. We find that one of the most important effects of the
noncommutative parameter θ is that it serves as a perpen-
dicular magnetic field.
For the latter, since the momenta are commutative, the

wave functions in momentum space still have meaning. We
can perform the path integral formulation directly in the
momentum space. And since the integrand is a Gaussian
form in the coordinate, we can integrate them and get
the Lagrangian (50) in momentum space. This Lagrangian
is dual to the one that describes a charged harmonic os-
cillator moving in a plane with a perpendicular constant
magnetic field in coordinate space. Interestingly, the non-
commutative parameter also serves as the perpendicular
magnetic field.
We are interested in the behaviors of the eigenvalues

and wave functions when the noncommutative parameter θ
takes certain limits. First, let us consider the limit of θ→ 0.
Notice that

lim
θ→0
ω = 0 , lim

θ→0
Ω = ω0 . (55)

It means that when the noncommutative parameter θ takes
its zero limit, the spectra will converge smoothly to

Enr ,m = 2h̄ω0

(
nr+

1

2
+
|m|

2

)
(56)

nr = 0, 1, 2, · · · , m= 0,±1,±2, · · ·
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It is the spectrum of a 2-dimensional harmonic oscillator
in the commutative plane. The corresponding radial wave
functions in this limit can also be obtained. They are

Rnr ,m(r) =
√
r

(
2Mω0
h̄

) 1
2

√
nr!

(nr+ |m|)!
exp

(
−
Mω0

2h̄
r2
)

×

(
Mω0

h̄
r2
)|m|/2

L|m|nr

(
Mω0

h̄
r2
)
, (57)

in coordinate space and

Rnr ,m(P ) =
√
p

(
2

Mh̄ω0

) 1
2

√
nr!

(nr+ |m|)!
exp

(
−
P 2

2Mh̄ω0

)

×

(
P 2

Mh̄ω0

)|m|/2
L|m|nr

(
P 2

Mh̄ω0

)
, (58)

in momentum space, respectively.
Then, we consider the large θ limit. In [15–17] the

authors find a perturbative expansion of the energy level
for NCQM with a central potential. In our model, we can
find the exact expression.
In coordinate space, the following expressions are valid

if the noncommutative parameter is large:

M∗ =
4

Mθ2ω20
, Ω = ω =

1

2
Mθω20 . (59)

These mean that the spectra are

Enr ,m = 2h̄ω

(
nr+

|m|

2
−
m

2
+
1

2

)
. (60)

The same expression for the energy levels can be found in
momentum space in the large θ limit.
In fact, (60) is analogous to Landau levels with θ acting

as a constant perpendicular magnetic field. Obviously, only
the lowest level is possible in this limit.

Acknowledgements. The authors thank Dr. Bin Zhou for his
valuable discussions. This work is supported by NSF of China

(Grant No. 10505003) and the Program for New Century Ex-
cellent Talents in University as well as the Outstanding Youth

Foundation of GuiZhou province (Grant No. 20050530).

References

1. A. Connes, M. Douglas, A.S. Schwarz, JHEP 9802, 003
(1998)

2. N. Seiberg, E. Witten, JHEP 99009, 032 (1999)
3. M. R Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977
(2001)

4. C.S. Chu, P.M. Ho, Nucl. Phys. B 550, 151 (1999)
5. C.S. Chu, P.M. Ho, Nucl. Phys. B 568, 447 (2000)
6. F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, Nucl. Phys. B
576, 578 (2000)

7. J. Jing, Z.-W. Long, Phys. Rev. D 72, 126002 (2005)
8. S. Minwalla, M. Van Raamsdonk, N. Seiberg, JHEP 0002,
020 (2000)

9. M. Van Raamsdonk, N. Seiberg, JHEP 0003, 035 (2000)
10. R. Gopakumar, S. Minwalla, A. Strominger, JHEP 0005,
020 (2000)

11. V.P. Nair, A.P. Polychronakos, Phys. Lett. B 505, 267
(2001)

12. B. Morariu, A.P. Polychronakos, Nucl. Phys. B 610, 531
(2001)

13. D. Karabali, V.P. Nair, A.P. Polychronakos, Nucl. Phys. B
627, 565 (2002)

14. B. Morariu, A.P. Polychronakos, Nucl. Phys. B 634, 326
(2002)

15. J. Gamboa, M. Loewe, J.C. Rojas, Phys. Rev. D 64,
067901 (2001)

16. J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Mod. Phys.
Lett. A 16, 2075 (2001)

17. J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Int. J. Mod.
Phys. A 17, 2555 (2002)

18. B. Muthukumar, P. Mitra, Phys. Rev. D 66, 027701 (2002)
19. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)
20. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path
Integrals (McGrawHill, New York, 1965)

21. H. Kleinert, Path Integral in Quantum Mechanics, Statis-
tics and Polymer Science, 3nd edn. (World Sciengific, Sin-
gapore, 2004)

22. L.D. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


